CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD SAN DIEGO REGION

MONITORING AND REPORTING PROGRAM NO. R9-2004-0111 FOR

SWEETWATER AUTHORITY LOWER SWEETWATER RIVER BASIN GROUNDWATER DEMINERALIZATION PLANT

SAN DIEGO COUNTY

A. MONITORING PROVISIONS

- 1. Samples and measurements taken as required herein shall be representative of the volume and nature of the monitored discharge. All samples shall be taken at the monitoring points specified in Order No. R9-2004-0111 or in this monitoring and reporting program and, unless otherwise specified, before the monitored flow joins or is diluted by any other waste stream, body of water, or substance. Monitoring points shall not be changed without notification to and the approval of this Regional Board.
- 2. Appropriate flow measurement devices and methods consistent with accepted scientific practices shall be selected and used to ensure the accuracy and reliability of measurements of the volume of monitored discharges. The devices shall be installed, calibrated and maintained to ensure that the accuracy of the measurements are consistent with the accepted capability of that type of device. Devices selected shall be capable of measuring flows with a maximum deviation of less than ±10 percent from true discharge rates throughout the range of expected discharge volumes. Guidance in selection, installation, calibration and operation of acceptable flow measurement devices can be obtained from the following references:
 - a. "A Guide to Methods and Standards for the Measurement of Water Flow," U.S. Department of Commerce, National Bureau of Standards, NBS Special Publication 421, May 1975, 96 pp. (Available from the U.S. Government Printing Office, Washington, D.C. 20402. Order by SD Catalog No. C13.10:421.)
 - b. "Water Measurement Manual," U.S. Department of Interior, Bureau of Reclamation, Second Edition, Revised Reprint, 1974, 327 pp. (Available from the U.S. Government Printing Office, Washington D.C. 20402. Order by Catalog No. 172.19/2:W29/2, Stock No. S/N 24003-0027.)
 - c. "Flow Measurement in Open Channels and Closed Conduits," U.S. Department of Commerce, National Bureau of Standards, NBS Special Publication 484, October

M-1 June 10, 2004

- 1977, 982 pp. (Available in paper copy or microfiche from National Technical Information Services (NTIS) Springfield, VA 22151. Order by NTIS No. PB-273 535/5ST.)
- d. "NPDES Compliance Sampling Manual," U.S. Environmental Protection Agency, Office of Water Enforcement, Publication MCD-51, 1977, 140 pp. (Available from the General Services Administration (8FFS), Centralized Mailing Lists Services, Building 41, Denver Federal Center, CO 80225.)
- 3. Monitoring must be conducted according to United States Environmental Protection Agency (USEPA) test procedures approved under Title 40, United States Code of Federal Regulations (CFR), Part 136, *Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act* as amended, unless other test procedures are specified in Order No. R9-2004-0111 and/or in this Monitoring and Reporting Program and/or by this Regional Board.
- 4. Monitoring results must be reported on forms approved by this Regional Board. Duplicate copies of the monitoring reports signed and certified as required by Reporting Requirement F.12 of Order No. R9-2004-0111 must be submitted to the USEPA and the Regional Board at the addresses listed in Reporting Requirement F.14 of Order No. R9-2004-0111.
- 5. If the discharger monitors any pollutant more frequently than required by Order No. R9-2004-0111 or by this monitoring and reporting program, using test procedures approved under 40 CFR Part 136, or as specified in Order No. R9-2004-0111 or this Monitoring and Reporting Program or by this Regional Board, the results of this monitoring shall be included in the calculation and reporting of the data submitted in the discharger's monitoring report. The increased frequency of monitoring shall also be reported.
- 6. The discharger shall retain records of all monitoring information, including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, copies of all reports required by Order No. R9-2004-0111 and this monitoring and reporting program, and records of all data used to complete the application for Order No. R9-2004-0111, for a period of at least five years from the date of the sample, measurement, report, or application. This period may be extended by request of this Regional Board at any time.
- 7. Calculations for all limitations which require averaging of measurements shall utilize an arithmetic mean unless otherwise specified in Order No. R9-2004-0111 or this Monitoring and Reporting Program.
- 8. All analyses shall be performed in a laboratory certified to perform such analyses by the California Department of Health Services or a laboratory approved by this Regional Board.

M-2 June 10, 2004

- 9. The discharger shall report all instances of noncompliance not reported under Reporting Requirement F.5 of Order No. R9-2004-0111 at the time monitoring reports are submitted. The reports shall contain the information listed in Reporting Requirement F.5.
- 10. Records of monitoring information shall include:
 - a. The date, exact place, and time of sampling or measurements;
 - b. The individual(s) who performed the sampling or measurements;
 - c. The date(s) analyses were performed;
 - d. The individual(s) who performed the analyses;
 - e. The analytical techniques or methods used; and
 - f. The results of such analyses.
- 11. All monitoring instruments and devices used by the discharger to fulfill the prescribed monitoring program shall be properly maintained and calibrated as necessary to ensure their continued accuracy. All flow measurement devices shall be calibrated at least once per year to ensure continued accuracy of the devices.
- 12. Monitoring results shall be reported at intervals and in a manner specified in Order No. R9-2004-0111 or in this Monitoring and Reporting Program.
- 13. This monitoring program may be modified by this Regional Board, as appropriate.

B. EFFLUENT MONITORING

1. Effluent monitoring for brine concentrate shall be conducted at the discharge point to the Upper Paradise Creek Flood Control Channel, outfall 009, and shall be conducted as noted in *Table 1. Effluent Monitoring Requirements for Reverse Osmosis Brine Concentrate Discharge*.

Table 1. Effluent Monitoring Requirements for Reverse Osmosis Brine Concentrate Discharge.

		Effluent		Analysis	Reporting
Constituent	Units	Limitation	Sample type	Frequency	Frequency
Flowrate	mgd			Daily	Quarterly
Salinity	ppt		Grab	Monthly	Quarterly
pН	units	Within the limits	Grab	Monthly	Quarterly
		of 6.0 and 9.0 at			
		all times			
Settleable solids	ml/L		Grab	Monthly	Quarterly
Total suspended	mg/L		Grab	Monthly	Quarterly
solids					
Nitrate (as N)	mg/L	5.0	Grab	Monthly	Quarterly
Total phosphorus	mg/L		Grab	Monthly	Quarterly
Orthophosporous	mg/L		Grab	Monthly	Quarterly

M-3 June 10, 2004

		Effluent		Analysis	Reporting
Constituent	Units	Limitation	Sample type	Frequency	Frequency
Copper	μg/L	3.73	Composite	Quarterly	Quarterly
Arsenic	μg/L		Composite	Quarterly	Quarterly
Zinc	μg/L		Composite	Quarterly	Quarterly
Selenium	μg/L		Composite	Quarterly	Quarterly

Note: mgd = million gallons per daymg/L = milligrams per liter ppt = parts per thousand $\mu g/l = micrograms$ per liter

ml/L = milliliters per liter

2. Effluent monitoring shall be conducted at the respective discharge points for the discharges of groundwater well-purge water and pressure (air) relief valves as noted in Table 2. Effluent Monitoring Requirements for Groundwater Well-purge Water, Pressure (Air) Relief Valves, and Plant Feed-water Dump.

Table 2. Effluent Monitoring Requirements for Groundwater Well-purge Water, Pressure

(Air) Relief Valves, and Plant Feed-water Dump.

		Effluent		Analysis	Reporting
Constituent	Units	Limitation	Sample type	Frequency	Frequency
Flowrate	Mgd			**	Quarterly
pН	units	Within the limits	Grab	**	Quarterly
		of 6.0 and 9.0 at			
		all times			
Duration of	minutes			**	Quarterly
discharge					
Date of	mm/dd/yy			**	Quarterly
discharge					
Copper	μg/L		Grab	Quarterly	Quarterly
Arsenic	μg/L		Grab	Quarterly	Quarterly
Zinc	μg/L		Grab	Quarterly	Quarterly
Selenium	μg/L		Grab	Quarterly	Quarterly

^{**} Whenever the discharge occurs.

- 3. Each groundwater well discharge location shall be qualitatively evaluated each quarter and reported quarterly. The qualitative evaluation shall include a narrative description of any erosion, sediment deposition, or other impacts to vegetation or wildlife in the vicinity of the respective discharge.
- 4. Effluent monitoring shall be conducted at the respective discharge points for the discharges of chlorine contact-tank overflow and shall be conducted as noted in *Table 3*. *Effluent Monitoring Requirements for Chlorine Contact-tank Overflow*.

		Effluent		Analysis	Reporting
Constituent	Units	Limitation	Sample type	Frequency	Frequency
Flowrate	mgd			**	Quarterly
Chlorine	mg/L	0	Grab	**	Quarterly
Residual					
pН	units	Within the limits	Grab	**	Quarterly
		of 6.0 and 9.0 at			
		all times			
Duration of	minutes			**	Quarterly
discharge					
Date of	mm/dd/yy			**	Quarterly
discharge					
Copper	μg/L		Grab	Quarterly	Quarterly
Arsenic	μg/L		Grab	Quarterly	Quarterly
Zinc	μg/L		Grab	Quarterly	Quarterly
Selenium	μg/L		Grab	Quarterly	Quarterly

^{**} Whenever the discharge occurs.

C. RECEIVING WATER MONITORING

The discharger shall implement, as necessary, the monitoring and reporting program in Section 3, Downstream Monitoring, and Section 5, Summary of Monitoring Program in Demineralization Facility Production Adjustment of the Lower Sweetwater River Basin Groundwater Demineralization Project, Mitigation and Monitoring Program, (MMP) prepared by Sweetwater Authority and U.S.D.I. Bureau of Reclamation, May 16, 1997, as revised through July 1998. See Attachment A, Lower Sweetwater River Basin Groundwater Demineralization Project, Mitigation and Monitoring Program, prepared by the Sweetwater Authority and U.S.D.I. Bureau of Reclamation, May 16, 1997 as revised through July 1998.

- a. The discharger shall evaluate the data collected pursuant to the MMP in an expedient manner after each sampling event and report quarterly to the Regional Board the results of such an evaluation.
- b. Indications that the discharge has caused an exceedence of the threshold limits for nitrates or impacts to downstream beneficial uses shall be reported as specified in *Provision E.2.* of *Order No. R9-2004-0111*.
- c. The MMP shall include one (1) water quality sampling point within 50 meters upstream of the discharge point in the Upper Paradise Creek Flood Control Channel. If this sampling point does not have a flow during the sampling period, the discharger shall state so in the monitoring report data.

M-5 June 10, 2004

- d. The MMP monitoring shall include the following water quality constituents:
 - (1) Total Dissolved Solids (salinity),
 - (2) Total Kjeldahl Nitrogen (TKN),
 - (3) Nitrate (as N),
 - (4) Chlorophyll A (μg/l),
 - (5) Total Phosphorus (mg/l), and
 - (6) Orthophosphate (mg/l).

D. ANNUAL SUMMARY REPORT

The discharger shall submit an annual tabular and graphical summary of the data collect for this monitoring program including the MMP.

E. MONITORING AND REPORTING SCHEDULE

Monitoring reports shall be submitted to this Regional Board according to the dates in *Table 4*. *Monitoring and Reporting Schedule*.

Table 4. Monitoring and Reporting Schedule.

Reporting Frequency	Report Period	Report Due
Quarterly	January through March	May 1
Quarterly	April through June	August 1
Quarterly	July through September	November 1
Quarterly	October through December	February 1
Annually	January through December	February 1

F. ENDNOTE REFERENCES

- 1. A grab sample is defined as an individual sample of at least 100 milliliters collected over a period not exceeding 15 minutes. Grab samples shall be collected over a shorter period if necessary to ensure that the constituent/parameter concentration in the sample is the same as that at the sampling location at the time the sample is collected.
- 2. A composite sample is defined as a combination of at least eight sample aliquots of at least 100 milliliters, collected at periodic intervals during the operating hours of a facility over a 24-hour period. For volatile pollutants, aliquots must be combined in the laboratory immediately before analysis. The composite must be flow proportional; either the time interval between each aliquot or the volume of each aliquot must be proportional to either the stream flow at the time of sampling or the total stream flow since the collection of the previous aliquot. Aliquots may be collected manually or automatically.

Ordered by

OHN H. ROBERTU

Executive Officer

Date: June 10, 2004

Lower Sweetwater River Basin Groundwater Demineralization Project

MITIGATION AND MONITORING PROGRAM

Prepared by

Sweetwater Authority 505 Garrett Avenue Chula Vista, CA 91910

and U.S.D.I. Bureau of Reclamation Boulder City, Nevada

May 16, 1997
Revised July 7, 1997
Ongoing Updates:
October 1997
February 1998
April 1998
July 1998

ATTACHMENT A
MRP NO. R9-2004-0111

11 31 ci 8- 113/ 111

For the Section of the Lead of the Section of the S

DISTRIBUTION OF MITIGATION AND MONITORING NOTEBOOK

Agencies:

- Ms. Mary Webb, U.S. Department of the Interior, U.S. Bureau of Reclamation, Lower Colorado Branch, Room M-116, Code: LC-2223, P.O. Box 61470, Boulder City, NV 89006-1470
- Mr. John Hanlon, U.S. Department of the Interior, U.S. Fish and Wildlife Service, 2730 West Loker Avenue, Carlsbad, CA 92008
- Mr. Bob Hoffman, National Marine Fisheries Service Southwest Region, 501 West Ocean Boulevard, Suite 4200, Long Beach, CA 90802-4221
- Mr. John Robertus, Regional Water Quality Control Board, 9771 Clairemont Mesa Boulevard, Suite B, San Diego, CA 92124-1331
- Mr. Greg Walls, California Department of Fish and Game, 530 East Montecito, Room 104, Santa Barbara, CA 93103

Project Team:

- Mr. Jim Smyth, Chief Engineer, Sweetwater Authority, P.O. Box 2328, Chula Vista, CA 91912-2328
- Mr. Hector Martinez, Project Manager, Sweetwater Authority, P.O. Box 2328, Chula Vista, CA 91912-2328
- Mr. Dennis Bostad, Director of Water Quality, Sweetwater Authority, 100 Lakeview Avenue, Spring Valley, CA 91977
- Mr. Pete Baranov, Chemist, Sweetwater Authority, 100 Lakeview Avenue, Spring Valley, CA 91977
- Mr. Pete Famolaro, Principal Biologist, Sweetwater Authority, 100 Lakeview Avenue, Spring Valley, CA 91977
- Mr. Kevin Kasner, Sweetwater Authority, P.O. Box 2328, Chula Vista, CA 91912-2328
- Ms. Troy Murphree, Senior Environmental Coordinator, Sweetwater Authority, P.O. Box 2328, Chula Vista, CA 91912-2328
- Ms. Barbara Bartholomae, Boyle Engineering, 7807 Convoy Court, San Diego, CA 92111
- Mr. Keith Merkel, Merkel and Associates, 4455 Murphy Canyon Road, Suite 120, San Diego, CA 92123 (w/o attachment)
- Dr. Michael Busdosh, Affinis, 847 Jamacha Road, El Cajon, CA 92019 (w/o attachment)

i:\eng_pool\troy\distribution

tee itleng_pool/troy/mitmon.doc for the actual Milligation & Monitoring notebook.

Table of Contents

<u>S</u> €	ection		_
			<u>Page</u>
1.0		mmary	4
2.0	- 1-	stream Monitoring	1
	2.1	Alluvial Groundwater Levels and Mater Ovella	5
	2.2	. Sou Morstale	5
		Borings	9
	2.4	Stream Gages	12
	2.5	Vegetation Monitoring	13
3.0	_		15
5.0		wnstream Monitoring	19
	3.1	Tatol Gamping	19
	3.2		
	3.3		23
	3.4	Seasonal Nitrogen Mass Loading Model	26
4.0	Óth		29
4.0		er Monitoring	32
	4.1	· · · · · · · · · · · · · · · · · ·	32
	4.2	Land Use and Development Monitoring	35
	4.3	URDS I/II Discharge Monitoring	38
	4.4	Light-footed clapper rail	40
	4.5	KOA TDS Monitoring	
	4.6	Rainfall Data	42
	4.7	DHS Vulnerability Assessment Requirements	44
5.0	Sur		45
9.0	5.1	mary of Monitoring and Production Adjustments	47
	5.2	Objective	47
	5.3	General	47
		Monitoring Impact Analysis	48
	5.4	Time Frame	- 48
	5.5	Responsibility	48
6.0	Repo	orting to Resource Agencies	1 0
	6.1	11.S. Fish and Mildle 101 (The second to th	51
	6.2	U.S. Fish and Wildlife/State Fish and Game	51
	6.3	Regional Water Quality Control Board	51
	0.5	All Involved Agencies	51
Figur	<u>'es</u>		
	1-1	Proposed Production Wells	?
	1-2	Monitoring Elements	2 3
	2-1	Groundwater Elevations vs. Alluvial Woll Braduation	8
	2-2	Soli Moisture vs. Alluvial Well Production	_
	2-3	Viewpoints of Photos and Limits of Aerial Photos	11
	3-1	Downstream Monitoring Locations	16
		Coodions	20

Table of Contents (continued)

Figures (co	ontinued)	
3-2 3-3 3-4 4-1 5-1 5-2	Distribution of Eelgrass Beds Summary of Macroalgae Findings Demineralization Facility Plant Volume Balance Area of Land Use Monitoring Upstream Impact Analysis Downstream Impact Analysis	2 2 3 3 4 5
<u>Tables</u>		
1-1 2-1 2-2 2-3 2-4 2-5 3-1 3-2 3-3 3-4 3-5 4-1 4-2 4-3 4-4 4-5 4-6 4-7	Monitoring Program Summary Alluvial Groundwater Elevations Alluvial Groundwater Quality Analysis Soil Moisture Percentage versus Alluvial Well Production Stream Gage Flows Vegetation Monitoring Sampling Dates and Tides Downstream Surface Water Samples Summary of Eelgrass Distribution Summary of Macroalgae Findings Report of Nitrogen Mass Loading Model Summary of Groundwater Depths, SDF Monitoring Wells Summary of Water Samples, SDF Monitoring Wells Land Use and Construction Monitoring Summary of URDS I/II Discharges Summary of Light-footed Clapper Rail Surveys KOA TDS Monitoring Summary of Rainfall	44 6 7 10 14 17 2 2 2 5 2 7 3 7 3 9 4 1 4 3 4 6
Appendices	<u>.</u>	
A B C D E F G H L	Soil Boring Report County of San Diego Stream Gage Agreement Analytical Method for Measuring TDS Analytical Method for Measuring TKN Analytical Method for Measuring Nitrate Analytical Method for Measuring Chlorophyl A Biological Surveys and Reports G-1 Vegetation Surveys G-2 Eelgrass and Macroalgae Surveys G-3 Light-footed Clapper Rail Surveys Soil Moisture Data DHS Vulnerability Assessment Requirements	

Section 3 Downstream Monitoring

3.1 Water Sampling

- A. Task. Water samples will be collected from five locations in the Lower Sweetwater River upstream and downstream of the demineralization plant discharge point. These locations are shown on Figures 3-1. Water samples will consist of the following chemical analyses: (1) total dissolved solids, (2) total Kjeldahl nitrogen (TKN), (3) nitrates, and (4) chlorophyl A levels as a measure of phytoplankton.
- B. <u>Purpose</u>. Provide chemical analysis of lower Sweetwater River to determine effect by the concentrate disposal.
- C: <u>Time Frame</u>. Samples shall be taken at or near low ebb tidal stage near a perigeon (spring) tide series, continuing for three years. At that time, all involved parties will meet to determine whether additional monitoring and/or revisions to the monitoring program will be required. Additional samples may be taken during the first seasonal storm to account for golf course and street surface runoff.
- D. <u>Methodology</u>. Procedures for sample collection and analysis using American Water Works Association (AWWA) standards will be followed. Specific analyses are as follows:
 - Total dissolved solids (TDS)/Salinity. See Appendix C.
 - Total Kjeldahl Nitrogen (TKN). See Appendix D.
 - 3. Nitrate. See Appendix E.
 - 4. Chlorophyl A. See Appendix F.
 - 5. Total Phosphorus (added to monitoring November 1997 by SWA staff).

Summary of sampling dates is shown in Table 3-1, with sampling data shown in Table 3-2.

E. <u>Staff Responsible</u>. Water Quality Department (P. Baranov).

SAMPLING DATES AND TIDES TABLE 3-1

TIDE: HEIGHT AT LOWEST TIDE (FT.)	11.10	1013	1440	14.14	@ 0452	@ 0444				0, 0		n-		1.7.			1416	0440						J248	1616	1509	1544				
LOWEST TIDE	1/20/00		1726/08	00 06/07/1		5/26/98 @	6/24/98 @	7/22/98 @ 0341	8/8/98 @ 0429	9/5/98 @ 0323	077/08 @ 0574	11/5/08 @ 1615	12/3/08	3)			(e)	4/8/97 @ C	0	6/5/97 @ 0423	7/1/107	8/18/07 @ 0357	0110191 (@ 0351	8470 (D) 18101 16	@	@	12/14/97 @				
TIDE HEIGHT (FT.)		2.1 4	000	6.0	-0.3	0.1	-0.2	0.0	0.5	1.5	0.1		1.					-0.5	-0.3	0.2	0.1	1.2	2.0	0.0	-0.4	-0.8	-0.7				
TIME	1437	1446	1337	4040	1318	0945	0808	0735	0701	1419	1308 /	1440	1434			4.440	1410	1224	. 0816	0841	0715	0642	1451	1500	1030	1424	133/				
YEAR	1998	1998	1998	1008	1000	1990	1998	1998	1998	1998	1998	1998	1998			1007	1937	1881	1997	1997	1997	1997	1997	1007	1997	1007					
DAY OF WEEK	Monday	Wednesday	Wednesday	Wednesday	Monday	Wollday	Monday	Tuesday	Wednesday	Thursday	Thursday	Tuesday	Wednesday			Friday	Thursday	Huisday	Tuesday	Thursday	Thursday	Friday	Monday	Wednesday	Thireday	Thursday	i i i i i aday				
₽ DAY	26	25	25	22	18	2 7	C]	14	12	17	5	03	02			0.7	03	000	.77	26	24	90	15	7.	13	1-1	-				
MONTH The	January	February	March	April	Mav	line a	aline in the second	yını	August	September	October	November	December		170	March	April	, , , , , , , , , , , , , , , , , , ,	way	June	July	August	September	October	November	December					

Data Collection: Monthly with monthly reporting. Responsible Staff: Pete Baranov

DOWNSTREAM SURFACE WATER SAMPLES

TABLE 3-2

0 10 0

-

Average Maximum Minimum

Belgia Demin TKN

13249 32000 500

1KN 0 08 1 2 0

Confutnte Average ' Maximum' Minimum

140

79857 38100 12100

Minimum

W.Nc Brid Average 29943 36100 14300

000 000 000 000

NX o

W. Troky Average Maximum Minimum

22725 38100 600

5 80

* Average ? MaxImum Minimum

. TDS (mg/l)

CHLOR.

, HO, (mg/l)

TKN

O COMMENTS		No flow from Poragina Coop	The state of the s	No flow from Day active Crass	MULIA CHICAL CLOCK DIVIN					INO How Irom Paradise Creek drain.			The second secon		No How from Paradise Creek drain					No flow from Paradise Creek drain.	or o				No llow from Paradise Croek drain				The state of the s	No flow from Paradise Greek than					No How Iron Paradise Creek drain.				1201	No flow from Paradise Creek drain.		
P TEMP		_	The same of	<u> </u>			-						25	-	7	12	24	25										-	9. 5	2 2	2 8	28	3 2	200	3 5	7 2	50	529	65	2	2	19
Total P (mg/l)			1																				ACRES - 10 A. Co.					The Part of the Pa											0.19	200	0.00	0.02
(mg/L)	2920	5850	1500	2510	31000	31000	31400	4550	24000	35300	34200	35200	27000	14100	33600	00000	20100	34900	32400	32000	38100	32800	34000	18900	27000	34800	33300	00000	14000	32100	34200	36300	19500	25500	36700	33400	15,600	20000	0000	32000	32100	34100
CHLOR."A" (ug/L)		THE R. P. LEWIS CO., LANSING,	ND<1	2.0	6.0	1.0	1.0	ND<1	7.0	ND<1	ND<1	3.0	2.0	2.0	10		2	0.7	1.0	5.0	10	0 6	1.0	4.0	NU	0	NO.4		0.00	2.0	1.0	1.0	1.0	2.0	3.0	10.0	7.0		0.0	+	_	4.0
NO3 (mg/L)	ND<1	ND<1	4	./	QV QV	ND<10	ND < 10 .	ND<0 10	0.15	ND<0.10	ND<0.10	ND-0 10	ND<0,10	ND<0.10	ND<0.10	NO. O.	ND co to	ND-101						0.00		219	ND co 10	VD 50 10	NO 10	ND<0.10	ND<0.10	ND<0.10	0.11	0.11	0.10	ND<0.10	D<0,10	ND<0.10	S C C C C	ND<0.10	0.10	ND<0.10
(mg/L)	Ž Ž	LVOV.	7-	7	Ž		ND41	2	ND<1	ND < 1	SD<	NO.1	ND<	Ž V V	ND<1	ND.	NDV	NO.	N CONTRACTOR		200	T	ī	Ť	Ť	+	No.	i	_	Po∢1	1	_	ND<1	ND<1	P. S	†-	ND<1	1	1	Ť	ND<1	\exists
ME SAMPLING LOCATION 19 East of Edgemere Bridge	SWR & Unner P. Coottons	SWR Before Demin Olechano	SWR & Upper P. Conflictor	West of N.C. Blvo Bridge	West of Trolley Bridge	24th Street Pier	SWD Before Decision	SWD # 10500 C C.	Contraction of Continence	West of N.C. Blvd Bridge	74th Circles	בייוו סוופבו גיונו	Syvy Belofe Demin. Discharge	Switt & Upper P.C. Confluence	West of N.C. Blvd. Bridge	West of Tralley Bridge	24th Street Pier	SWR Before Demin, Discharge	SWR & Upper P.C. Confluence	West of N.C. Blvd Bridge	West of Trolley Bridge	24th Street Pler	SWR Before Demin Discharge	SWR & Upper P. C. Confluence	West of N.C. Blyd. Bridge	West of Trolley Bridge	24th Street Pier	SWR	SW	Ves.				SWR & Upper P.C. Confluence		West of Trolley Bridge	24th Street Pier	SWR Before Demin. Discharge	& Upper P.C. Confluence	of N.C. Blvd. Bridge	of Trolley Bridge	24th Street Pier
	1425	1235	12	15	12	13	080	100	8	3 8	3 8	2	2 20		8	8	082	071	071	071	071	071	064	064	0642	0642	0642	1450	1440	1425	919	400	676	515	1500	1447	- 3		1315	\neg	_	_
DATE 37/97	3/7/97	4/3/97	4/3/97	4/3/97	4/3/97	4/3/97	5/27/97	5/27/97	5/77/97	5/27/97	5/27/97	6/26/97	6/26/97	100000	0,20197	16/57/0	6/26/97	7/24/97	7/24/97	7/24/97	7/24/97	7/24/97	8/8/97	8/8/97	8/8/97	8/8/97	8/8/97	9/15/97	9/15/97	18/21/8	0/15/07	10/11/01	10,000	/8/61/01	78/21/01	10/15/97	10/15/97	11/12/97	11/12/97	11/12/97	11/12/97	11/12/97

105 31836 36300 20400
38 93 00
0 0 0 56 0 56
17KN 0 008
Average Maximum Minimum

Responsible Staft: P. Baranov
Comment: Samples taken at or near low ebb tidal stage near a perigeon tide series.

**Detection Limits out of acceptable range. Data omitted from averages.

Not D' 1

	-1	_	-	!	1	il	<u>;</u>			I	ü					ii	7	,			И			_	,				_																	٠.		
		No flow from Dozedine O	No flow field Paradise Creek drain.	***************************************			No flow from Paradise Creek drain	Angular Control of the Control of th			High flows from river	High flows from river and Paradise drain					No llow Iron Paradise Creek drain				*Contains large amounts of Phaeophytin	No flow from Paradise Creek drain.					No flow from Paradise Creek drain					No flow from Paradise Creek thain				No Flow												
TEMP.		7		2 2	5	14	14.	16	15	Ť.	15	17	17	18	17	17	16	11	100	18						13		23	21	21		-							-									
Total P	0 13	ND<0.010	0.13	0	90 0	60.0	0.12	0.10	0.00	0.05	0.58	0 16	0.56	0.37	0.33	0.17	0.16	0.19	0 12	0.10	0.13	0.15	0.16	0.79	0.06	0.09	0.09	0.00	000	0.02			-					-								-		
TDS	00/5	8800	1	33400	32200	2900	7400	38100	33200	34500	1100	900	12100	14300	20400	6200	4960	23200	2/200	2/100	3180	5960	21900	23900	28200	1860	2160	21000	20100	23/00						The second section is							-			+		-
CHLOR "A"	12.0	4.0	5.0	1.0	1.0	5.0	5.0	6.0	5.0	5.0	3.4	6.6	7.7	20.5	8.1	2.0	2.4	5.6	12.2	0./	2.5	5.4	6.0	50	4.5	17.0	14.0	49.0	40.0	P.C																		
NO3 (ma/L)	ND<0.10	ND<0.10	ND<0.10	ND-0 10	ND<0.10	ND<0.10	0.18	ND<0.10	NO 00 10	NU<0.10	8	0.41	1.20	/R.O	0.56	P	0.25	NO. 00. 00. 00. 00. 00. 00. 00. 00. 00. 0	2000	ND-0.10	ND<0.10	NO 0 10	0000		ND <0.10	1	0.13	200		ND-0-10														1		1		
TKN: (mg/L)	Pě	ND<1	ND	C.	NO.	SON S		2	2 2		Ž	Ž	2		NO.	200	202	Ž	T	2	Ž.	2	\neg	T	1	Ž	ND41		Ť	1						-										-		
SAMPLING LOCATION	SWR Before Demin, Discharge	SWR & Upper P.C. Confluence	West of N.C. Blvd. Bridge	West of Trolley Bridge	SIMO Bolon Domin Dist.	SWE & Hoor D. Configuration	West of N C Blud Origin	West of Trolley British	24th Steel Diec	CIAD BACK DOWN	SWD & Hoser Of Confi	West of N C Blud Golden	West of Trollow Bridge	24th Street Diag	SWO Before Domin Dischare	SIAD & Unavided	West of N.C. Blue Bridge	West of Trolley Bridge	24th Street Pler	SMO Before Demis Disk	Civil Define Definit. Discriarge	Was of N. Ohid Balance	Wast of Trolley Bridge	24th Street Pler	CIAD Before Domin Direktor	SWA S LINES DE CONTROL	West of N.C. Blad. Bridge	West of Trollov Bridge	24lh Street Pier	SWR Before Donin Dischara	SWR & Unec P C Confluence	West of N.C. Blvd. Bridge		24th Street Pier	Paradise Creek @ NC Golf Course						100							
	- 7	1315	1305	1220	1535	1530	1518			1440	_	1	-1-	7	7	320		1255	1	~	$\overline{}$	_		1300		_	-	V 8160	0855 2	0845	0837	0827			G.							+			-			
DATE	12/11/97	12/11/97	12/11/97	12/11/97	1/27/98	1/27/98	1/27/98	1/27/98	1/27/98	2/25/9R	2/25/98	2/25/98	2/25/98	2/25/98	3/25/98	3/25/98	3/25/98	3/25/98	3/25/98	4/23/9R	4/23/9B	4/23/98	4/23/98	4/23/98	5/18/98	86/11/2	5/18/98	5/18/98	5/18/98	6/15/98	8/12/98	6/12/98	6/15/98	6/15/98	6/15/98													

Responsible Staff; P. Baranov
Comment: Samples taken at or near low ebb tidal stage near a perigeon tide series.
* Detection Limits out of acceptable range. Data omitted from averages.
ND = Not Detected

3.2 <u>Eelgrass</u>

- A. Task. Measure the specific distribution of eelgrass within and adjacent to the mouth of the Sweetwater River channel as shown on Figure 3-1 and from the interior portion of the Sweetwater channel will be developed.
- B. <u>Purpose.</u> To determine if concentrate disposal has caused change in eelgrass.
- C. <u>Time Frame</u>. Monitoring transects commencing July 1997 and continuing on a monthly basis for the months of August, September and October. Additional monitoring will occur in January and April. Monitoring will continue for three years after the plant begins operating. At that time, all involved parties will meet to determine whether additional monitoring and/or revisions to the monitoring program will be required.
- D. <u>Methodology</u>. Specific methodology will be discussed with the National Marine Fisheries. Summary of findings is reported on **Table 3-3**. The Eelgrass survey report is attached as Appendix G.
- E. <u>Staff Responsible</u>. Environmental Coordinator (T. Murphree) will coordinate with consultant on eelgrass monitoring.

Distribution of Eelgrass Beds at the

Mouth of the Sweetwater River

Image and data source: U.S. Naval Facilities Engineering Command, Natural Resources Branch (1996)

Table 3-3
Summary of Eelgrass Distribution

Date	Surveyed by	Area of Coverage (ft²)	Mean Depth (feet	
6/23/97	H. Hanson, K. Cull	20,315	MLLW)	(shoots/m²)
8/13/97	H. Hanson, K. Cull		-2.2 ± 0.4 (n=12)	125.8 ± 50.6 (n=1
10/28/97	H. Hanson, K. Cull	20,250	$-2.2 \pm 0.4 (n=12)$	193.3 ± 54.8 (n=1
2/13/98		12,993	-1.9 <u>+</u> 0.4 (n=10)	139.2 ± 46.5 (n=1)
4/27/98	H. Hanson, R. Woodfield	11,563	-1.9 <u>+</u> 0.4 (n=9)	129.8 ± 46.3 (n=9
	K. Cull, A. Gutierrez	11,910	-0.9 ± 0.5 (n=10)	129.6 ± 39.5 (n=10
6/24/98	H. Hanson, R. Woodfield	13,450		270.4 ± 86.1 (n=10
			/	2.0.1 _ 00.1 (11-10
		I		

3.3 Macroalgae

A. Task. Measure the macroalgae abundance and distribution in the areas identified in Figure 3-1. Macroalgae attaches to surfaces ranging from hard scape to mudflats. When extremely abundant, macroalgae can smother or inhibit recruitment of some vascular plant species in tidal salt marshes. The primary indicator of Macroalgae abundance is a real extent of cover. Because direct measurement of cover requires intrusion into and disturbance of mudflat and salt marsh areas, less destructive sampling efforts are planned.

Monitoring will occur along the entire reach of potential nutrient influence. At each sampling location, three non-overlapping photographic "sample sites" shall be taken.

- B. <u>Purpose.</u> To determine if concentrate disposal has caused changes in macroalgae abundance.
- C. <u>Time Frame</u>. Same as that identified in Section 3.1.C.
- D. <u>Methodology</u>. Estimated percent cover measured using aerial photographs and grid overlays. Summary of findings are reported on Table 3-4 and Figure 3-5. The Macroalgae survey report is attached in Appendix G.

Photographs will be taken of mudfiat areas from standardized locations at each sampling site. Photographs will be taken at or near +1 foot MLLW tidal elevation and, to the extent practical, at the same time of day. Photographs shall be taken at a consistent height and using a standard lens size. These photographs will be overlain with a standard grid to estimate percent cover (e.g., percentage of boxes in grid containing algae). Photographs and percent cover for each site will be compared between sampling dates.

From each sampling location, the percent cover in each of the three sample photographs shall be averaged to estimate the mean percent cover at that location on that date. Mean percent cover at each location shall be compared to discern patterns, if any, relative to nutrient distribution. In addition, mean cover at each site will be compared over time to determine if there are any significant increases in Macroalgae cover potentially caused by the project.

E. <u>Staff Responsible</u>. Engineering Department, Environmental Coordinator (T. Murphree).

Table 3-4 Summary of Macroalgae Findings

Ì			
Date	Surveyed by	Mean Coverage	Mean Wet Weight (g)
10/8/97	R. Woodfield, C. Moore	34%	192
10/28/97	H. Hanson, C. Cull	46%	403
2/13/98	H. Hanson, R. Woodfield	0%	0
4/22/98	H. Hanson, A. Gutierrez	3%	34
6/24/98	H. Hanson, R. Woodfield	24%	607

3.4 <u>Seasonal Nitrogen Mass Loading Model</u>

- A. <u>Task.</u> Develop a seasonal nitrogen mass loading model for the Lower Sweetwater River downstream of the discharge point of the plant. From this model, distribution of sampling locations, intervals and effort (Section 3.1) shall be re-evaluated and protocols adjusted to allow the best degree of segregation of inputs as would be practical during operational phases.
- B. <u>Purpose</u>. To determine if concentrate disposal has resulted in an increase in nitrate loading to lower Sweetwater River. This is in conjunction with monitoring of eelgrass and macroalgae (Sections 3.2 and 3.3 respectively).
- C. <u>Time Frame</u>. Initial model shall be completed after receiving one year of baseline information per Sections 3.1, 3.2 and 3.3. Model will be continually updated as water sampling data is developed. Three years after commencement of project operation, all involved parties will meet to determine whether additional monitoring and/or revision to the monitoring program will be required.
- D. <u>Methodology</u>. Summary of model is shown on Figure 3-4, with summary of data reported on Table 3-5.
- E. <u>Staff Responsible</u>. Water Quality Department (Dennis Bostad). Plant operator after plant is in operation.

FIGURE 3-4

DEMINERALIZATION FACILITY PLANT VOLUME BALANCE -(ACRE FEET PER MONTH - TYPICAL DRY SEASON)

<u>Balances - Volume , AF/Mo</u>

Brine: B = D + A - S => 317 + 33 - 298 = 52River + Brine: Z = F - P + B => 84 - 0 + 52 = 136 $Z = F + D + U_1 - U_2 - S => 84 + 317 + 83 - 50 - 298 = 136$

Mass Balances - Kg / Mo TDS & N

TDS (10^3 Kg/Mo): 580 = 207 + 458 + 250 - 151 - 185 N (Kg/Mo): 352 = 208 + 78 + 307 - 185 - 56

Table 3-5 Report of Nitrogen Mass Loading Model

Date	Time	Nitrogen Mass Loading	Comments
	-		
			
			
			
<u> </u>			
			

Responsible Staff: Water Quality Department, Dennis Bostad Data due: Annual report in December

Section 5 Summary of Monitoring Program in Demineralization Facility Production Adjustment

5.1 Objective

The objective of the monitoring program is to obtain ongoing feedback to ensure that the project is operated in a manner that will not adversely affect biological resources. After three years of post-construction monitoring, all involved parties will meet to determine whether additional monitoring and/or revisions to the monitoring program will be required.

5.2 General:

The project has been designed with the flexibility to extract water from two independent water sources: the Lower Sweetwater River Basin Alluvium and the San Diego Formation. The relative water extraction volumes will vary seasonally. The information received from upstream and downstream monitoring and the San Diego Formation wells is needed in order to make the appropriate adjustments to water production at the plant, as well rates or groundwater extraction. One San Diego Formation well will always be in operation to provide raw water to blend with the permeate from the reverse osmosis units. This blending is required to reduce the corrosive qualities of the permeate.

Receipt and analyses of the data is essential to maximize the output of product water from the plant and avoiding impacts to the biological environment. By having the "baseline" data (i.e., one year of information before project starts), and then comparing the baseline data to the data after the commencement of the project necessary adjustments can be made. The following groundwater management scenarios would be used as appropriate:

- 1. The relative contribution from each source would vary in response to monitoring data. For example, when monitoring data indicates a marked drop in groundwater and reduced soil moisture that predicts an impact to the riparian vegetation, the alluvial pumping rate would be reduced or stopped until the threat of impact is no longer present.
- 2. Groundwater withdrawals could be limited to the night time hours when the evapotranspiration requirements of the habitat are much less. This scenario would be possible because of the quick recovery of the aquifer after cessation of pumping.

- 3. Whenever reduced pumping of the alluvial aquifer becomes necessary, additional pumping from the San Diego Formation could offset the reduction from the alluvial aquifer.
- 4. Groundwater extraction from the alluvial basin will be greatest during the winter months (December through March) due to higher probability of wet weather. The San Diego Formation extraction will be greatest during summer with least extraction during the winter months.

5.3 Monitoring Impact Analysis

The decision to adjust pumping from the groundwater aquifer will take a tiered approach. Combining all of the data and developing correlations is essential to base any identified impacts. Flow charts reflecting the tiered analysis for both upstream and downstream monitoring are shown on Figures 5-1 and 5-2, respectively.

Per October 1997 meeting with HM, JLS and DB will develop a monitoring plan for the operator.

- 5.4 <u>Time Frame</u>. As information is collected.
- 5.5 Responsibility. Operator of the Demineralization Plant and Water Quality.

FIGURE 5-1 UPSTREAM IMPACT ANALYSIS

FIGURE 5-2 DOWNSTREAM IMPACT ANALYSIS

^{\\}pluto\work\demin plant\monitoring program\flow chart.cdr

Section 6 Reporting to Resource Agencies

6.1 Bureau of Reclamation

Unless otherwise directed, an annual report will be developed. The first report will summarize baseline information. Subsequent annual reports will be completed after plant begins operation. Reports will include summaries of all monitoring, action taken, and plant production adjustments (groundwater extraction and concentrate discharge). These reports will be submitted to the Bureau of Reclamation for review. The Bureau of Reclamation will provide the report to USFWS for review and comment.

The Sweetwater Authority Engineering Department will compile all of the data and develop the report.

6.2 Regional Water Quality Control Board

Downstream monitoring reports will be submitted quarterly. If nitrate levels are determined to be deleterious, the Authority will meet with the Board to consider alternative action for nitrate removal.

6.3 All Involved Agencies

U.S. Bureau of Reclamation
U.S. Fish and Wildlife Service
National Marine Fisheries Service
Regional Water Quality Control Board
California Department of Fish and Game

After three years of post-operational monitoring is completed, all involved agencies will meet to review monitoring data and analyses. At that time, a determination will be made as to whether additional monitoring and/or revisions to the monitoring program will be required.

An initial agency meeting was to be held in July 1998. However, the date that the demineralization facility will go online has been delayed until January or February 1999. As such, the pre-operational monitoring will continue through November 1998 and an agency meeting is proposed to be conducted at that time.

i:\eng_pool\troy\mitmon.doc